Backtransform scaled predictors in the input data (obtained via download_model()) to their original scales. This is done by first back-scaling to the log-scale, and then backtranformed to the original scale (the predictors were log-transformed as described in Lai et al. 2021).

backtransform(data)

Arguments

data

Defaults to the data object in download_model() (see Examples), but could also be another data.frame with the same predictor names, should you wish to (back)scale and (back)center using the same means and standard deviations for any reason.

Value

A backtransformed data.frame with predictors at their original scales.

References

Lai, H.R., Tan, G.S.Y., Neo, L., Kee, C.Y., Yee, A.T.K., Tan, H.T.W. and Chong, K.Y. (2021) Decoupled responses of native and exotic tree diversities to distance from old-growth forest and soil phosphorous in novel secondary forests. Applied Vegetation Science, 24, e12548. doi:10.1111/avsc.12548

Examples

# download the model object containing input data
novelforest_model <- download_model()
#> To save the model locally, use argument save_to = 'path/filename.rds'
#> Downloading model (size: 16.5 Mb)

dat <- backtransform(novelforest_model$data)
head(dat)
#>   SD_N_0     dist     size nitrogen phosphorous potassium patch   SD_N_2 SD_E_0
#> 1      2 3293.800 38.15329     2730       17.40      59.1    AD 1.600000      3
#> 2      8 3174.000 38.15329     1750        9.32      54.7    AD 5.128205      2
#> 3      2 3262.353 38.15329     2590       12.40      82.5    AD 1.600000      2
#> 4      1 3315.600 38.15329     2310        6.16      76.6    AD 1.000000      1
#> 5      0 3358.000 38.15329     2520        6.51      53.9    AD 0.000000      3
#> 6      6 3671.503 21.44964     2660       23.60      71.2    AW 4.121951      2
#>     SD_E_2     FD_N_0    FD_N_2    FD_E_0    FD_E_2
#> 1 1.549356   6.068161  6.068161 19.061061 14.349844
#> 2 1.124514 176.741963 80.528861  6.345825  6.345825
#> 3 1.045431   6.276896  6.276896  6.351461  6.351461
#> 4 1.000000   0.000000  0.000000  0.000000  0.000000
#> 5 2.461538   0.000000  0.000000 19.061061 13.579309
#> 6 1.800000  95.149105 54.255080  6.345825  6.345825